
Compound Options - 08-20-16
N. T. Gladd

Initialization: Be sure the files NTGStylesheet2.nb and NTGUtilityFunctions.m is are in the same

directory as that from which this notebook was loaded. Then execute the cell immediately below by

mousing left on the cell bar to the right of that cell and then typing “shift” + “enter”. Respond “Yes” in

response to the query to evaluate initialization cells.

In[15]:= SetDirectory[NotebookDirectory[]];

(* set directory where source files are located *)

SetOptions[EvaluationNotebook[], (* load the StyleSheet *)

StyleDefinitions → Get["NTGStylesheet2.nb"]];

Get["NTGUtilityFunctions.m"]; (* Load utilities package *)

Original notes Compound Options (Kaminski), Compound Option Derivation 03-05-08, Compound

Option Derivation 09-04-10

Purpose
Original notes Compound Options (Kaminski), Compound Option Derivation 03-05-08, Compound Option Derivation

09-04-10

Compound options — options on options — are a relatively simple form of exotic options first treated in

the literature by Geske in 1978. http://citeseerx.ist.psu.edu/viewdoc/download?-

doi=10.1.1.453.2801&rep=rep1&type=pdf

Compound options are not traded on exchanges but are available to institutional traders through the

over-the-counter equity derivative trading desks of large investment banks. Compound options are

sometimes useful in non trading contexts — a web search indicates they have developed a following in

the “real options” subgenre of decision science. They are also used when valuing employee stock

options, complex instruments for which an active market does not exist.

I use Mathematica to derive numerical forms and a semi-closed form for the fair value of a representa-

tive compound option. The calculations are somewhat long and complicated and facilitated by the use

computer symbolic manipulation. As well, some of the techniques invoked at various stages of the

calculation are useful in other contexts.

Compound Options - 08-20-16.nb 1

copyright © N T Gladd 2016

Background
Consider a option struck at KO at time t on a stock option struck at KS at time TO and expiring at time TS

t TO TS

Option on Stock expires at TS
Strike = KS

Option on Option expires at TO
Strike = KO

As an archetype of compound options, consider a call option struck on a call option on a stock S.

COC(t) = e-r(TO-t) Q[max[C[S(TO), KO, TS - TO] - KO, 0]] (1)

where

C[S(TO), KO, TS - TO] = e-r(TS-TO) Q[max[S(TS) - KS, 0]] (2)

is a standard (so-called plain vanilla) call option. Here, Q[...] denotes expectation taken under the risk

neutral probability measure. Famously, under geometric Brownian motion stock dynamics, the standard

call option is fairly valued by the Black-Scholes formula

C[S, K, r, q, σ, τ] = e-q τ S(d) - e-r τ K  d - σ τ (3)

d =
log (S /K) + r - q +

σ2

2
 τ

σ τ

(x) = 
-∞

x

(t)ⅆ t cumulative standard normal distribution

(t) =
1

2π

e
-

t2

2 standard normal distribution

(4)

In the context of equations (1) and (2), S = S(TO), K = KO, τ = TS - TO.

These distributions are readily available in Mathematica.

In[17]:= Module[{dist, info},

dist = NormalDistribution[];

info = {{[x], PDF[dist, x]}, {[x], CDF[dist, x]}};

LGrid[info, "Normal distributions"]]

Out[17]=

Normal distributions

[x]
ⅇ
-

x2

2

2π

[x]
1

2
Erfc-

x

2



The stock dynamics under GBM are

S(T , ϵ) = S(t) exp r - q -
σ2

2
(T - t) + σ ϵ (T - t)  (5)

2 Compound Options - 08-20-16.nb

copyright © N T Gladd 2016

where ϵ is a random number chosen from (ϵ).

Equation (1) can be expressed as an integral over ϵ

COC(t) = e-r(TO-t)

-∞

∞

(ϵ)max[C[S(TO, ϵ), KO, TS - TO] - KO, 0]ⅆϵ

= e-r(TO-t)

-∞

∞

(ϵ)max e-q τ S(TO, ϵ)(d(ϵ)) - e-r τ KS  d(ϵ) - σ τ - KO ⅆϵ

(6)

where I have made it clear that the stock price at time TO depends on the random variable ϵ.

If interest is limited to obtaining a numerical answer, equation (6) or equation (7) can be immediately

valued.

However, Geske (reference above) calculated an explicit expression for (6) in terms of the cumulative

binormal distribution. Below, I use the pattern recognition capabilities of Mathematica to derive the

Geske result. Specifically, from (expression w1[16] below) I have

COC(t = 0)ⅇ-
b2

2 S0 ℐ(, , b, ϵc) - KS ℐ  - σ τ , , 0, ϵc - KO (-ϵc) (7)

where

τ = -TO + TS

b = σ TO

 = -
b2

2σ τ

+
σ τ

2
-

Log[KS]

σ τ

+
Log[S0]

σ τ

 =
b

σ τ

S(t = 0) = S0

(8)

and the quantity ϵc is the solution of

C[S(TO, ϵc), KO, TS - TO] = KO (9)

which, for general parameters, must be obtained numerically.

Also, as calculated in Appendix A.

ℐ(a, b, c, d) =


d

∞

dx ea x (x)(b x + c) = ⩵ⅇ
c2

2 
a + b c

1 + b2

 -2-c + d,
a + b c

1 + b2

, -
b

1 + b2


(10)

with 2 being the standard cumulative binormal distribution

2(a, b, ρ) = 
-∞

a

dx 
-∞

b

dy 2(x, y, ρ)

Compound Options - 08-20-16.nb 3

copyright © N T Gladd 2016

2(x, y, ρ) =
ⅇ
-

x2+y2-2 x y ρ

2 1-ρ2

2π 1 - ρ2

I have performed the calculation for the special case r = q = t = 0 because of the bulkiness of intermedi-

ate expressions. However, the calculation is essentially algorithmic and could be repeated without the

assumption of zero rates.

The valuation formula (7) should be considered to be semi-closed. For one thing the parameter ϵc must

be obtained numerically. Secondly, there is no readily available closed form for 2 for general parame-

ters.

In[18]:= {PDF[BinormalDistribution[ρ], {x, y}], CDF[BinormalDistribution[ρ], {x, y}]}

Out[18]= 
ⅇ
-
x2+y2-2 x y ρ

2 1-ρ2

2 π 1 - ρ2

, CDF[BinormalDistribution[ρ], {x, y}]

Guide to calculations below

Section 1 Equation (7) is derived.

Section 2 An explicit form for ℐ(a, b, c, d).

Section 3 Comparative numerical calculations are performed

Appendix A Some identities involving 2(a, b, ρ) are derived. The method used involves nontrivial

multiple definitions of the evaluation function that streamline intermediate calculations.

Appendix B The figure above is constructed.

1 Derivation of closed form for COC
COC(t) = e-r(TO-t)


-∞

∞

(ϵ)max[C[S(TO, ϵ), KO, TS - TO] - KO, 0]ⅆϵ

= e-r(TO-t)

-∞

∞

(ϵ)max e-q τ S(TO, ϵ)(d(ϵ)) - e-r τ KS  d(ϵ) - σ τ - KO ⅆϵ

The objective is to reexpress equation (6) is terms of known functions. Note first that the Max term has

the effect of introducing a cutoff for the integration range.

4 Compound Options - 08-20-16.nb

copyright © N T Gladd 2016

In[19]:= ModuleSt = 100, r = 0.01, q = 0.03, σ = 0.2,

TO = 1  12, KS = 100, TS = 3  12, τ, KO, root, inset, SO, d, , ,

τ = TS - TO;

KO = EuroCall[St, KS, r, q, σ, TS - TO];

SO[ϵ_] := St Exp r - q +
σ2

2
TO + ϵ σ TO;

d[ϵ_] =
1

σ τ

LogSO[ϵ]  KS + r - q +
σ2

2
τ ;

[ϵ_] := PDF[NormalDistribution[], ϵ];

[a_] := CDF[NormalDistribution[], a];

root =

FindRootExp[-q τ] SO[ϵ] [d[ϵ]] - Exp[-q τ] KS-σ τ + d[ϵ] - KO ⩵ 0, {ϵ, 0};

inset = Stl@StringForm["ϵc = ``", root 〚1, 2〛];

Plot[ϵ] MaxExp[-q τ] SO[ϵ] [d[ϵ]] - Exp[-q τ] KS-σ τ + d[ϵ] - KO, 0,

{ϵ, -5, 5}, PlotRange → All,

Epilog → {Inset[inset, {-2.5, 0.1}]}, AxesLabel → {Stl["ϵ"], ""},

PlotLabel → Stl["integrand of expression for COC"], PlotStyle → Black

Out[19]=

-4 -2 2 4
ϵ

0.05

0.10

0.15

0.20

0.25

integrand of expression for COC

ϵc = -0.184357

The cutoff value ϵc is the solution of

e-q τ S(TO, ϵc)(d(ϵc)) - e-r τ KS  d(ϵc) - σ τ - KO = 0 (12)

and, for general parameters, has to be determined numerically.

Given a value for ϵc, the integral to be evaluated is

COC(t) = e-r(TO-t)

ϵc

∞

(ϵ) e-q τ S(t) exp r - q -
σ2

2
(TO - t) + σ ϵ (TO - t) (d(ϵ)) -

e-r τ KS  d(ϵ) - σ τ - KO ⅆϵ

(13)

and it turns out that integrals involving products of eϵ, n(ϵ), and (a ϵ + b) have closed forms involving

the cumulative binormal distribution.

Compound Options - 08-20-16.nb 5

copyright © N T Gladd 2016

So — I use Mathematica to manipulate the integral (8) into a form where the pattern of the integrand in

(9) can be matched to a known integral. Rather than writing down the integral (8) I start with the basic

definitions of COC, C, d, and S(T) and construct the required integral

From above the definition of a call on call compound option (COC) is

In[20]:= w1[1] = COC ⩵ Exp-r TO - t Int[ϵ] C[S[TO], KS, TS - TO] - KO, {ϵ, ϵc, ∞}

Out[20]= COC ⩵ ⅇ-r (-t+TO) IntC[S[TO], KS, -TO + TS] - KO [ϵ], {ϵ, ϵc, ∞}

In writing this expression, I purposely use the artificial structure Int[integrand, limits] rather than Mathe-

matica’s Integrate[integrand, limits] function, which would immediately attempt to evaluate. The Int

structure permits symbolic manipulations.

The call option is valued by the Black-Scholes formula

In[21]:= w1[2] = C[S[TO], KS, TS - TO] ⩵

Exp[-q (TS - TO)] S[TO] [d] - Exp[-r (TS - TO)] KS d - σ TS - TO 

Out[21]= C[S[TO], KS, -TO + TS] ⩵ ⅇ-q (-TO+TS) S[TO] [d] - ⅇ-r (-TO+TS) KS d - σ -TO + TS 

where

In[22]:= w1[3] = d ⩵ LogS[TO]  KS + r - q +
σ2

2
(TS - TO)  σ (TS - TO)

Out[22]= d ⩵ Log
S[TO]

KS
 + -q + r +

σ2

2
(-TO + TS)  σ -TO + TS 

The GBM stock dynamics are

In[23]:= w1[4] = S[TO] ⩵ S[t] Exp r - q -
σ2

2
TO - t + σ ϵ TO - t 

Out[23]= S[TO] ⩵ ⅇ
ϵ σ -t+TO +-q+r-

σ2

2
 (-t+TO) S[t]

with ϵ being a random number chosen from (ϵ).

Clearly, the expressions to be manipulated will be unwieldy. For the purpose of identifying the individual

integral expressions, the simplifications r = q = t = 0 can be made. Once the collection of of operations

leading to the final result has been established, it is trivial to repeat the calculation with symbolic values

for r, q, and t. I also introduce some simplifying parameter substitutions

In[24]:= simplifyingSubs = -TO + TS → τ, σ TO → b, σ
2 TO → b2, S[0] → S0

Out[24]= -TO + TS → τ, σ TO → b, σ2 TO → b2, S[0] → S0

6 Compound Options - 08-20-16.nb

copyright © N T Gladd 2016

Impose the simplifications

In[25]:= w1[5] = {w1[1], w1[2], w1[3], w1[4]} /. {r → 0, q → 0, t → 0} /. simplifyingSubs

Out[25]= COC ⩵ IntC[S[TO], KS, τ] - KO [ϵ], {ϵ, ϵc, ∞},

C[S[TO], KS, τ] ⩵ S[TO] [d] - KS d - σ τ , d ⩵

σ2 τ

2
+ Log S[TO]

KS


σ τ

, S[TO] ⩵ ⅇ
-
b2

2
+b ϵ

S0

The combined form for the COC integral is

In[26]:= w1[6] = w1[5]〚1〛 /. w1[5]〚2〛 // ER /. w1[5]〚4〛 // ER

Out[26]= COC ⩵ Int[ϵ] -KO + ⅇ
-
b2

2
+b ϵ

S0 [d] - KS d - σ τ  , {ϵ, ϵc, ∞}

A first step is to determine the explicit dependence of the argument of (d) on ϵ

In[27]:= w1[7] = w1[5]〚3〛 /. w1[5]〚4〛 // ER

Out[27]= d ⩵

σ2 τ

2
+ Log ⅇ

-
b2

2
+b ϵ

S0

KS


σ τ

In[28]:= w1[8] = w1[7] /. Log[a_] ⧴ PowerExpand@Log[a]

Out[28]= d ⩵
1

σ τ

-
b2

2
+ b ϵ +

σ2 τ

2
- Log[KS] + Log[S0]

I note that this has the form  +  ϵ and identify specific values for  and 

In[29]:= w1[9] = {, } → ExpandAll@w1[8]〚2〛 /. _ + _ ϵ /; FreeQ[1, ϵ, ∞] → {, }

Out[29]= {, } → -
b2

2 σ τ

+
σ τ

2
-
Log[KS]

σ τ

+
Log[S0]

σ τ

,
b

σ τ



With knowledge of explicit forms for  and , I can simplify the main expression

In[30]:= w1[10] = w1[5]〚1〛 /. w1[5]〚2〛 // ER /. w1[5]〚4〛 // ER

Out[30]= COC ⩵ Int[ϵ] -KO + ⅇ
-
b2

2
+b ϵ

S0 [d] - KS d - σ τ  , {ϵ, ϵc, ∞}

In[31]:= w1[11] = w1[10] /. d →  +  ϵ

Out[31]= COC ⩵ Int[ϵ] -KO + ⅇ
-
b2

2
+b ϵ

S0 [ +  ϵ] - KS  +  ϵ - σ τ  , {ϵ, ϵc, ∞}

Next, some rules are applied that distribute the operator Int over summation, and move constant terms

Compound Options - 08-20-16.nb 7

copyright © N T Gladd 2016

outside the Int structure

In[32]:= w1[12] = ExpandAll@w1[11] //. Int[a_ + b_, c_] → Int[a, c] + Int[b, c] //.

Int[a_ b_, c_] /; FreeQ[a, ϵ, ∞] → a Int[b, c] /.

Int[c_ Exp[a_ + b_ ϵ], lim_] → Exp[a] Int[c Exp[b ϵ], lim]

Out[32]= COC ⩵ -Int[[ϵ], {ϵ, ϵc, ∞}] KO -

Int[ϵ]  +  ϵ - σ τ , {ϵ, ϵc, ∞} KS + ⅇ
-
b2

2 Intⅇb ϵ [ϵ] [ +  ϵ], {ϵ, ϵc, ∞} S0

The first term can be evaluated immediately.

In[33]:= ErfRules = Erfc[x_] → 1 - Erf[x], Erf[x_] → 2 2 x - 1;

In[34]:= w1[13] = w1[12]〚2, 1〛 →

w1[12]〚2, 1〛 /. [ϵ] → PDF[NormalDistribution[], ϵ] /. Int → Integrate //.

ErfRules /. [a_] → 1 - [-a] // ExpandAll

Out[34]= -Int[[ϵ], {ϵ, ϵc, ∞}] KO → -KO [-ϵc]

Mathematica evaluates such integrals in terms of Erf. I use ErfRules to transform to the cumulative

normal distribution function that is preferred in the financial literature.

In[35]:= w1[14] = w1[12] /. w1[13]

Out[35]= COC ⩵ -Int[ϵ]  +  ϵ - σ τ , {ϵ, ϵc, ∞} KS +

ⅇ
-
b2

2 Intⅇb ϵ [ϵ] [ +  ϵ], {ϵ, ϵc, ∞} S0 - KO [-ϵc]

I next introduce pattern matching rules for the remaining integrals, which have the structure

ℐ(a, b, c, d) ≡ 
d

∞

dϵ ⅇc ϵ n(ϵ)(a + b ϵ)

and will be evaluated in Section 2.

In[36]:= w1[15] = w1[14] /. Intⅇc_ ϵ
[ϵ] [a_ + b_ ϵ], {ϵ, d_, ∞} /;

And[FreeQ[b, ϵ, ∞], FreeQ[c, ϵ, ∞]] → ℐ[a, b, c, d]

Out[36]= COC ⩵ -Int[ϵ]  +  ϵ - σ τ , {ϵ, ϵc, ∞} KS + ⅇ
-
b2

2 S0 ℐ[, , b, ϵc] - KO [-ϵc]

In[37]:= w1[16] =

w1[15] /. Int[[ϵ] [a_ + b_ ϵ], {ϵ, d_, ∞}] /; FreeQ[b, ϵ, ∞] → ℐ[a, b, 0, d]

Out[37]= COC ⩵ ⅇ
-
b2

2 S0 ℐ[, , b, ϵc] - KS ℐ - σ τ , , 0, ϵc - KO [-ϵc]

Thus, the COC has been expressed in terms of an integral ℐ(a,b,c,d) which will be shown to have a

closed form. Actually, I refer to it as semi-closed since the cutoff parameter ϵc must be determined

numerically. Also, unless one has confidence in an approximate form of the cumulative standard binor-

8 Compound Options - 08-20-16.nb

copyright © N T Gladd 2016

mal distribution, 2 must also be evaluated numerically.

I collect results and construct a function that can be used for numerical studies. I avoid the use of

subscripts within Function definitions. For some of the reasons why, see

http://mathematica.stackexchange.com/questions/18393/what-are-the-most-common-pitfalls-awaiting-

new-users/18395#18395

For τ and b

In[38]:= simplifyingSubs 〚1〛 // Reverse /. {TO → TO, TS → TS}

Out[38]= τ → -TO + TS

In[39]:= simplifyingSubs 〚2〛 // Reverse /. {TO → TO}

Out[39]= b → TO σ

For  and 

In[40]:= w1[9] /. {S0 → St, KS → KS}

Out[40]= {, } → -
b2

2 σ τ

+
σ τ

2
-
Log[KS]

σ τ

+
Log[St]

σ τ

,
b

σ τ



From Section 2

In[41]:= w2["final result"] = ℐ[a, b, c, d] ⩵ ⅇ
c2

2 
a + b c

1 + b2
 -2-c + d,

a + b c

1 + b2
, -

b

1 + b2


Out[41]= ℐ[a, b, c, d] ⩵ ⅇ
c2

2 
a + b c

1 + b2
 - 2-c + d,

a + b c

1 + b2
, -

b

1 + b2


In preparation for numerical calculations

In[42]:= w2["final result"] /. [a_] → Numerical[a] /.

2[a_, b_, ρ_] → 2Numerical[a, b, ρ]

Out[42]= ℐ[a, b, c, d] ⩵ ⅇ
c2

2

1

2
Erfc-

a + b c

2 1 + b2
 - 2Numerical-c + d,

a + b c

1 + b2
, -

b

1 + b2


In[43]:= w1[16] /. {S0 → St, KS → KS, KO → KO, ϵc → ϵCut} /.

ℐ[p1_, p2_, p3_, p4_] → ℐNumerical[p1, p2, p3, p4] /. [a_] → Numerical[a]

Out[43]= COC ⩵

-
1

2
KO Erfc

ϵCut

2
 + ⅇ

-
b2

2 St ℐNumerical[, , b, ϵCut] - KS ℐNumerical - σ τ , , 0, ϵCut

Compound Options - 08-20-16.nb 9

copyright © N T Gladd 2016

With these expressions in hand, I implement the valuation function COCSemiClosed. Note here that I

do not retype the expressions such as ℐNumerical, I cut and paste them from the derived expressions

above, thus lessening the possibility of typographical errors.

In[44]:= Clear[2Numerical, ℐNumerical, COCSemiClosed];

2Numerical[a_, b_, ρ_] :=

NIntegrate[PDF[BinormalDistribution[ρ], {x, y}], {x, -∞, a}, {y, -∞, b}];

ℐNumerical[a_, b_, c_, d_] :=

ⅇ
c2

2 -2Numerical-c + d,
a + b c

1 + b2
, -

b

1 + b2
 +Numerical

a + b c

1 + b2
 ;

COCSemiClosed[St_, σ_, TO_, KO_, TS_, KS_] :=

Module{r = 0, q = 0, τ, b, , , ϵCut, SO, COC},

τ = -TO + TS;

b = TO σ;

 = -
b2

2 σ τ

+
σ τ

2
-
Log[KS]

σ τ

+
Log[St]

σ τ

;

 =
b

σ τ

;

SO[ϵ_] := St Exp r - q -
σ2

2
τ + ϵ σ τ ;

ϵCut = FindRoot[EuroCall[SO[x], KS, 0, 0, σ, τ] ⩵ KO, {x, 0}]〚1, 2〛 ;

COC = ⅇ
-
b2

2 St ℐNumerical[, , b, ϵCut] -

KS ℐNumerical - σ τ , , 0, ϵCut - KONumerical[-ϵCut]

I perform numerical calculations with this function in Section 3.

2 Evaluation of ℐ(a, b, c, d)
The integral ℐ(a, b, c, d) will be shown to involve the cumulative binormal distribution

2(a, b, ρ) = 
-∞

a


-∞

b

n2(x, y, ρ) ⅆy ⅆx = (x < a, y < b)

where

n2(x, y, ρ) =
1

2 π 1 - ρ2

ⅇ
-
1

2

x2-2 x y ρ+y2

1-ρ2

Mathematica has a closed form for 2 but not for 2

10 Compound Options - 08-20-16.nb

copyright © N T Gladd 2016

In[48]:= With[{dist = BinormalDistribution[ρ]},

{PDF[dist, {x, y}], CDF[dist, {x, y}]}]

Out[48]= 
ⅇ
-
x2+y2-2 x y ρ

2 1-ρ2

2 π 1 - ρ2

, CDF[BinormalDistribution[ρ], {x, y}]

I now proceed with a Mathematica evaluation of ℐ[a, b, c, d]

ℐ(a, b, c, d) ≡ 
d

∞

dϵ ⅇc ϵ n(ϵ)(a + b ϵ)

After many operational steps I will find

ℐ(a, b, c, d) ≡ 
d

∞

dϵ ⅇc ϵ n(ϵ)(a + b ϵ) = ⅇ
c2

2 
a + b c

1 + b2
 -2-c + d,

a + b c

1 + b2
, -

b

1 + b2


Start with

In[49]:= w2[1] = Int[Exp[c ϵ] [ϵ] [b ϵ + a], {ϵ, d, ∞}]

Out[49]= Intⅇc ϵ [ϵ] [a + b ϵ], {ϵ, d, ∞}

Introduce an integral form form for [a + b ϵ]. First, consider the integral representation

In[50]:= w2[2] = [a + b ϵ] ⩵ Int[[η], {η, -∞, a + b ϵ}]

Out[50]= [a + b ϵ] ⩵ Int[[η], {η, -∞, a + b ϵ}]

To remove the ϵ dependence from the upper limit of integration, make the change of variables.

In[51]:= w2[3] = ζ ⩵ η - b ϵ

Out[51]= ζ ⩵ -b ϵ + η

Then dζ = dη and the limits of integration become η = -∞ → ζ = -∞ and η = a + b ϵ → ζ = a

In[52]:= w2[4] = w2[2] /. {η, -∞, a + b ϵ} → {ζ, -∞, a} /. Sol[w2[3], η]

Out[52]= [a + b ϵ] ⩵ Int[[b ϵ + ζ], {ζ, -∞, a}]

and

In[53]:= w2[5] = w2[1] /. w2[4] // ER

Out[53]= Intⅇc ϵ Int[[b ϵ + ζ], {ζ, -∞, a}] [ϵ], {ϵ, d, ∞}

Write this as a double integral

Compound Options - 08-20-16.nb 11

copyright © N T Gladd 2016

In[54]:= w2[6] = w2[5] /. Int[a_ Int[b_, lim2_], lim1_] → Int2[a b, lim1, lim2]

Out[54]= Int2ⅇc ϵ [ϵ] [b ϵ + ζ], {ϵ, d, ∞}, {ζ, -∞, a}

Introduce explicit expressions for the terms involving 

In[55]:= w2[7] = w2[6] /. [x_] → PDF[NormalDistribution[], x] /. {ϵ → x, ζ → y}

Out[55]= Int2
ⅇ
c x-

x2

2
-
1

2
(b x+y)2

2 π
, {x, d, ∞}, {y, -∞, a}

The next task is to manipulate this expression into a form that can be matched with to 2

2(X , Y, ρ) =
ⅇ
-
X2-2 ρ X Y+Y2

2 1-ρ2

2 π 1 - ρ2

The general form of the bivariate normal distribution is

In[56]:= w2[8] = κ PDF[BinormalDistribution[{μx, μy}, {σx, σy}, ρ], {x, y}] dx dy

Out[56]= dx dy ⅇ
-

(x-μx)2

σx2
+

(y-μy)2

σy2
-
2 (x-μx) (y-μy) ρ

σx σy

2 1-ρ2 κ  2 π 1 - ρ2 σx σy

where κ is a normalization constant to be determined. The expanded integrand of w2[7] is

In[57]:= w2[9] =
ⅇ
c x-

x2

2
-
1

2
(b x+y)2

2 π
// ExpandAll

Out[57]=
ⅇ
c x-

x2

2
-
b2 x2

2
-b x y-

y2

2

2 π

I equate the arguments of the exponential terms for these two expressions

In[58]:= w2[10] = w2[8] /. a_ Exp[b_] → b ⩵ w2[9] /. a_ Exp[b_] → b // ExpandAll

Out[58]= -
x2

2 - 2 ρ2 σx2
+

2 x μx

2 - 2 ρ2 σx2
-

μx2

2 - 2 ρ2 σx2
-

y2

2 - 2 ρ2 σy2
+

2 y μy

2 - 2 ρ2 σy2
-

μy2

2 - 2 ρ2 σy2
+

2 x y ρ

2 - 2 ρ2 σx σy
-

2 y μx ρ

2 - 2 ρ2 σx σy
-

2 x μy ρ

2 - 2 ρ2 σx σy
+

2 μx μy ρ

2 - 2 ρ2 σx σy
⩵ c x -

x2

2
-
b2 x2

2
- b x y -

y2

2

There are 5 parameters to be determined

12 Compound Options - 08-20-16.nb

copyright © N T Gladd 2016

In[59]:= w2[11] = MapEqnCoefficient#, x2 &, w2[10],

MapEqnCoefficient#, y2 &, w2[10], MapEqn[Coefficient[#, x y] &, w2[10]],

MapEqn[Coefficient[#, x] &, w2[10]] /. y → 0,

MapEqn[Coefficient[#, y] &, w2[10]] /. x → 0

Out[59]= -
1

2 - 2 ρ2 σx2
⩵ -

1

2
-
b2

2
, -

1

2 - 2 ρ2 σy2
⩵ -

1

2
,

2 ρ

2 - 2 ρ2 σx σy
⩵ -b,

2 μx

2 - 2 ρ2 σx2
-

2 μy ρ

2 - 2 ρ2 σx σy
⩵ c,

2 μy

2 - 2 ρ2 σy2
-

2 μx ρ

2 - 2 ρ2 σx σy
⩵ 0

In[60]:= w2[12] = MapEqn[Simplify, w2[11]]

Out[60]= 
1

2 -1 + ρ2 σx2
⩵

1

2
-1 - b2,

1

2 -1 + ρ2 σy2
⩵ -

1

2
,

ρ

σx σy - ρ2 σx σy
⩵ -b,

μy ρ σx - μx σy

-1 + ρ2 σx2 σy
⩵ c,

-μy σx + μx ρ σy

-1 + ρ2 σx σy2
⩵ 0

In[61]:= w2[13] = Solve[w2[12], {σx, σy, ρ, μx, μy}] // Simplify

Out[61]= σx → -1, σy → - 1 + b2 , ρ → -
b

1 + b2
, μx → c, μy → -b c,

σx → -1, σy → 1 + b2 , ρ →
b

1 + b2
, μx → c, μy → -b c,

σx → 1, σy → 1 + b2 , ρ → -
b

1 + b2
, μx → c, μy → -b c,

σx → 1, σy → - 1 + b2 , ρ →
b

1 + b2
, μx → c, μy → -b c

The financially appropriate branch is the one with σx and σy positive

In[62]:= w2[14] = w2[13]〚3〛

Out[62]= σx → 1, σy → 1 + b2 , ρ → -
b

1 + b2
, μx → c, μy → -b c

Thus, the integrand of w2[7]

In[63]:= w2[7]

Out[63]= Int2
ⅇ
c x-

x2

2
-
1

2
(b x+y)2

2 π
, {x, d, ∞}, {y, -∞, a}

is equivalent to 2(x, y, - b

1+b2
). It still remains to rescale the integration variables X = x - μx

σx
 , Y = y - μy

σy
,

and to account for the fact that 2 is normalized to unity while w2[7] is not. To calculate the normaliza-

Compound Options - 08-20-16.nb 13

copyright © N T Gladd 2016

tion set x = y = 0

In[64]:= w2[15] = w2[8] ⩵ w2[9] /. dx → 1 /. dy → 1 /. x → 0 /. y → 0

Out[64]=
ⅇ
-

μx2

σx2
+

μy2

σy2
-
2 μx μy ρ

σx σy

2 1-ρ2 κ

2 π 1 - ρ2 σx σy

⩵
1

2 π

In[65]:= w2[16] = Solve[w2[15], κ]〚1, 1〛

Out[65]= κ → ⅇ

μx2

2 1-ρ2 σx2
+

μy2

2 1-ρ2 σy2
-

μx μy ρ

1-ρ2 σx σy 1 - ρ2 σx σy

In[66]:= w2[17] = w2[16] /. w2[14] // Simplify // PowerExpand

Out[66]= κ → ⅇ
c2

2

I am now prepared to rewrite the integral w2[7] in a form that is almost consistent with the definition of

the cumulative bivariate distribution in the “standard” form.

In[67]:= w2[18] = w2[7] /.
ⅇ
c x-

x2

2
-
1

2
(b x+y)2

2 π
→ κ 2(x, y, ρ) /. d → d - μx  σx /.

a → (a - μy) / σy /. w2[17]

Out[67]= Int2ⅇ
c2

2 2[x, y, ρ], x,
d - μx

σx
, ∞, y, -∞,

a - μy

σy


Using the explicit mapping parameters

In[68]:= w2[19] = w2[18] /. w2[14] /. Int2[a_ b_, lim1_, lim2_] /;

And[FreeQ[a, x, ∞], FreeQ[a, y, ∞]] → a Int2[b, lim1, lim2]

Out[68]= ⅇ
c2

2 Int22x, y, -
b

1 + b2
, {x, -c + d, ∞}, y, -∞,

a + b c

1 + b2


Note that the limits of integration in w2[19] are not in the standard form for the cumulative standard

bivariate distribution. In Appendix A, I calculate the identity


-∞

a

dx 
b

∞

dy 2(x, y, ρ) = [a] -2[a, b, ρ]

and use that to obtain the standard form

In[69]:= w2["final result"] = ℐ[a, b, c, d] == w2[19] /.

co_ Int2[2[x, y, ρ_], {x, A_, ∞}, {y, -∞, B_}] → co ([B] -2[A, B, ρ])

Out[69]= ℐ[a, b, c, d] ⩵ ⅇ
c2

2 
a + b c

1 + b2
 - 2-c + d,

a + b c

1 + b2
, -

b

1 + b2


14 Compound Options - 08-20-16.nb

copyright © N T Gladd 2016

After going through such a series of symbolic manipulations, it is worthwhile to perform a numerical

check of beginning, intermediate, and final forms to establish confidence in the derived forms.

In[70]:= Module{, , a = 1, b = 1, c = 2 , d = 2, ρ, κ, 2, 2},

ρ = -
b

1 + b2
;

κ = ⅇ
c2

2 ;

[ϵ_] := PDF[NormalDistribution[], ϵ];

[x_] := CDF[NormalDistribution[], x];

2[x_, y_, ρ_] := PDF[BinormalDistribution[ρ], {x, y}];

2[a_, b_, ρ_] := NIntegrate[2[x, y, ρ], {x, -∞ , a}, {y, -∞ , b}];

NIntegrate[Exp[c ϵ] [ϵ] [a + b ϵ], {ϵ, d, ∞}],

NIntegrate
ⅇ
c x-

x2

2
-
1

2
(b x+y)2

2 π
, {x, d, ∞}, {y, -∞, a},

NIntegrate[κ 2[X, Y, ρ], {X, -c + d, ∞}, {Y, -∞, a}],

ⅇ
c2

2 
a + b c

1 + b2
 -2-c + d,

a + b c

1 + b2
, -

b

1 + b2
 

Out[70]= {3.69347, 3.69347, 3.60153, 3.69347}

Increasing the accuracy requirement beyond the default value for NIntegrate on the third term would

bring it in line.

3 Numerical calculations
I generate some numerical results for the Call on Call compound options, by implementing three differ-

ent models

Model 1 - Brute force, single variable numerical integration of the defining expression eqn(6) - COCNu-

mericalSQ

Model 2 - Single quadrature numerical integration of the defining expression eqn(13) with a numerically

determine lower cutoff - COCNumericalSQCutoff

Model 3 - Implementation of the semi-closed form eqn(7) equivalent to Geske’s 1978 result -

COCSemiClosed.

Compound Options - 08-20-16.nb 15

copyright © N T Gladd 2016

In[71]:= Clear[Numerical, Numerical, EuroCall, COCNumericalSQ, COCNumericalSQCutoff];

Numerical[ϵ_] := PDF[NormalDistribution[], ϵ];

Numerical[a_] := CDF[NormalDistribution[], a];

EuroCall[St_, K_, r_, q_, σ_, τ_] :=

Module{d},

d = LogSt  K + r - q +
σ2

2
τ  σ τ ;

Exp[-q τ] StNumerical[d] - Exp[-r τ] KNumerical-σ τ + d;

(* Model 1 *)

COCNumericalSQ[St_, r_, q_, σ_, TO_, KO_, TS_, KS_] :=

Module{d, SO},

SO[ϵ_] := St Exp r - q -
σ2

2
TO + ϵ σ TO ;

Exp[-r TO] NIntegrate[

Numerical[ϵ] Max[EuroCall[SO[ϵ], KS, r, q, σ, TS - TO] - KO, 0], {ϵ, -∞, ∞}];

COCNumericalSQCutoff[St_, r_, q_, σ_, TO_, KO_, TS_, KS_] :=

Module{d, SO, ϵCut},

SO[ϵ_] := St Exp r - q -
σ2

2
TO + ϵ σ TO ;

(* determine the lower limit cutoff *)

ϵCut = FindRoot[EuroCall[SO[x], KS, r, q, σ, TS - TO] ⩵ KO, {x, 0}]〚1, 2〛 ;

Exp[-r TO] NIntegrate[

Numerical[ϵ] Max[EuroCall[SO[ϵ], KS, r, q, σ, TS - TO] - KO, 0], {ϵ, ϵCut, ∞}]

The model COCSemiClosed was implemented at the end of Section 2.

I compare the three models for representative parameters

Consider a 1 month call-on-call option struck at 3 on a 2 month call option on a stock struck at 100. The

market conditions are St = 100, r = 0, q = 0, σ = 0.2.

16 Compound Options - 08-20-16.nb

copyright © N T Gladd 2016

In[77]:= ModuleSt = 100, r = 0.0, q = 0.0, σ = 0.2,

TO = 1  12., KS = 100, TS = 3  12., KO = 3, info, infoParams, G,

info = {{"Model 1", "Model 2", "Model 3"},

{ COCNumericalSQ[St, r, q, σ, TO, KO, TS, KS], COCNumericalSQCutoff[St,

r, q, σ, TO, KO, TS, KS], COCSemiClosed[St, σ, TO, KO, TS, KS]}};

infoParams = {{"St", "r", "q", "σ", "KS", "TS", "KO", "TO"},

{NF2@St, r, q, NF2@σ, NF2@KS, NF4@TS, NF2@KO, NF4@TO}};

G[1] = LGrid[info, "Model comparison for representative parameters"];

G[2] = LGrid[infoParams, "Parameters values"];

Grid[{{G[1]}, {G[2]}}]

Out[77]=

Model comparison for representative parameters
Model 1 Model 2 Model 3
1.68439 1.68439 1.68358

Parameters values
St r q σ KS TS KO TO

100.00 0. 0. 0.20 100.00 0.2500 3.00 0.0833

I plot some comparative results for Model 2 (single quadrature with cutoff) and Model 3 (semi-closed

form). Using the predetermined lower cutoff for the the numerical integration is more efficient that

allowing Mathematica’s adaptive sampling algorithm to determine it automatically.

Compound Options - 08-20-16.nb 17

copyright © N T Gladd 2016

In[78]:= ModuleSt = 100, r = 0.0, q = 0.0, σ = 0.2,

TO = 1  12., KS = 100, TS = 3  12., KO = 3, values, info, G,

values["cutoff"] = Table[{KS, COCNumericalSQCutoff[St, r, q, σ, TO, KO, TS, KS]},

{KS, 0.9 St, 1.1 St, 0.01 St}];

values["semi-closed"] = Table[{KS, COCSemiClosed[St, σ, TO, KO, TS, KS]},

{KS, 0.9 St, 1.1 St, 0.01 St}];

info = {{"St", "r", "q", "σ", "TS", "KO", "TO"},

{NF2@St, r, q, NF2@σ, NF4@TS, NF2@KO, NF4@TO}};

G[1] = ListPlot[values["cutoff"], Joined → True,

Epilog → {OC[#, Black] & /@ values["semi-closed"]},

AxesLabel → {Stl["KS"], Stl["COC"]}, PlotLabel →

"COC as function of stock option strike KS\nModel2 - Blue line, Model 3

- Black circles", ImageSize → {450, 250}];

G[2] = LGrid[info, "Parameters"];

Grid[{{G[1]}, {G[2]}}]

Out[78]=

95 100 105 110
KS

2

4

6

8

COC

COC as function of stock option strike KS

Model2 - Blue line, Model 3 - Black circles

Parameters
St r q σ TS KO TO

100.00 0. 0. 0.20 0.2500 3.00 0.0833

18 Compound Options - 08-20-16.nb

copyright © N T Gladd 2016

In[79]:= ModuleSt = 100, r = 0.0, q = 0.0, σ = 0.2,

TO = 1  12., KS = 100, TS = 3  12., KO = 3, values, info, G,

values["cutoff"] = Table[{KO, COCNumericalSQCutoff[St, r, q, σ, TO, KO, TS, KS]},

{KO, 2, 4, 0.25}];

values["semi-closed"] = Table[{KO, COCSemiClosed[St, σ, TO, KO, TS, KS]},

{KO, 2, 4, 0.25}];

info = {{"St", "r", "q", "σ", "KS", "TS", "TO"},

{NF2@St, r, q, NF2@σ, NF2@KS, NF4@TS, NF4@TO}};

G[1] = ListPlot[values["cutoff"], Joined → True,

Epilog → {OC[#, Black] & /@ values["semi-closed"]},

AxesLabel → {Stl["KO"], Stl["COC"]}, PlotLabel →

"COC as function of option on option strike KO\nModel2 - Blue line, Model

3 - Black circles", ImageSize → {450, 250}];

G[2] = LGrid[info, "Parameters"];

Grid[{{G[1]}, {G[2]}}]

Out[79]=

2.5 3.0 3.5 4.0
KO

1.4

1.6

1.8

2.0

2.2

COC

COC as function of option on option strike KO

Model2 - Blue line, Model 3 - Black circles

Parameters
St r q σ KS TS TO

100.00 0. 0. 0.20 100.00 0.2500 0.0833

I note that Mathematica’s “FinancialDerivatives” package also contains models for compound options. I

compare the model valuations developed in this notebook with the relevant FinancialDerivatives’

{“CompoundCall”,”European”,”Call”} model. The agreement is close for the representative case but I did

note discrepancies for other parameter values. By close, I do not mean identical to x decimal places.

Rather, close means that discrepancies are within a typical market maker generated bid-ask spread.

Compound Options - 08-20-16.nb 19

copyright © N T Gladd 2016

In[80]:= ModuleSt = 100, r = 0.0, q = 0.0, σ = 0.2,

TO = 1  12., KS = 100, TS = 3  12., KO = 3, info, infoParams, G,

info = {{"Model 1", "Model 2", "Model 3", "FinancialDerivatives"},

{ COCNumericalSQ[St, r, q, σ, TO, KO, TS, KS], COCNumericalSQCutoff[

St, r, q, σ, TO, KO, TS, KS], COCSemiClosed[St, σ, TO, KO, TS, KS],

FinancialDerivative[{"CompoundCall", "European", "Call"},

{"StrikePriceUnderlying" → KS, "StrikePrice" → KO,

"ExpirationUnderlying" → TS , "Expiration" → TO},

{"CurrentPrice" → St, "Dividend" → q, "Volatility" → σ, "InterestRate" → r}]}};

infoParams = {{"St", "r", "q", "σ", "KS", "TS", "KO", "TO"},

{NF2@St, r, q, NF2@σ, NF2@KS, NF4@TS, NF2@KO, NF4@TO}};

G[1] = LGrid[info, "Model comparison for representative parameters"];

G[2] = LGrid[infoParams, "Parameters values"];

Grid[{{G[1]}, {G[2]}}]

Out[80]=

Model comparison for representative parameters
Model 1 Model 2 Model 3 FinancialDerivatives
1.68439 1.68439 1.68358 1.68407

Parameters values
St r q σ KS TS KO TO

100.00 0. 0. 0.20 100.00 0.2500 3.00 0.0833

Close agreement in financial derivative practice does not mean identical to x decimal places. Rather,

close means that discrepancies are within a typical market maker generated bid-ask spread. The main

reason for this lack of precision is that the values of the input market parameters -- S, r, σ are con-

stantly changing in at least the third decimal place. Further, the various assumptions that underlie the

no-arbitrage option theory are not satisfied to high accuracy. For example, the theory presupposes a

perfectly liquid option market and the ability of market participants to take instantaneous advantage of

arbitrages — doesn’t happen in the real world.

An unfortunate weakness of Mathematica’s FinancialDerivatives package is that the documentation is

quite sparse and is insufficient to allow quantitative discrepancies between alternative models to be

resolved. The documentation refers to “typical” parameters and contract specifications. This is a bit

annoying since, if there is one thing I learned in ten plus years of experience as a quant for two large

investment banks, it is that there are no standard definitions for derivative financial instruments. Deriva-

tive traders develop argots and it sometimes requires a translator (usually one of the desk quants) for

risk managers or higher management to be able to communicate effectively with them. There is often

disagreement between different trading groups (even within the same firm!) as to the definition of a

derivative instrument and especially as to how that instrument should be valued. Instruments traded

with an external counterparty require a “term sheet” - a detailed legalistic sounding document specifying

terms and conditions. Also, contemporary government regulatory policies requires extensive documenta-

tion and testing. There are good paying jobs with titles like “model validator”, “model risk specialist”, or

“model governance specialist.”

Finally, I mention that it should be appreciated that fair values for the COC calculated using the models

above should NOT be depended on when purchasing the option in an over-the-counter financial mar-

ket. A market maker who would sell this option to you would use a more sophisticated dynamical model

20 Compound Options - 08-20-16.nb

copyright © N T Gladd 2016

for the stock price, one carefully calibrated to present market conditions. Such a model would account

for term structure of interest rates (the r term is more complicated), considerations about actual divi-

dends paid by the underlying corporation issuing the stock (the q term is more complicated) and, most

important, the model would account for the observable fact that volatility is neither constant or uniform

over all strikes and option tenors (the σ term is much more complicated). The practical way for a non

expert party to buy a compound option would be to shop around and obtain asking prices from several

trading desks.

Nonetheless, it is useful for quants to know how to value such options under GBM. Such tractable

models provide intuition and often serve as the basis for testing more sophisticated models. Simplified

models are also useful in enterprise risk management systems where many tens of thousands of

instruments are being valued and hedged on a daily basis. The incorporation of longer running complex

computational models in those systems is not technically feasible.

The GBM based approach to the COC option would be useful in “real option” applications where option

theoretics are used to inform decisions based on future uncertainties and contingencies. In such applica-

tions, sharp-eyed, model-rich market makers with asymmetric information would not be on the other

side of the trade.

Appendix A - A required identity
In the calculation of ℐ(a, b, c, d) the following identity is required.


a

∞

dx 
-∞

b

dx n2(x, y, ρ) = (b) -2(a, b, ρ)

Rather than proceed step by step in the manner above, I take a different approach that streamlined the

calculation for this simpler special case. I again define a struct to represent the integral but call it Jnt this

time to avoid confusion with the Int form used above. I assign properties to the function Jit that facilitate

its valuation.

Compound Options - 08-20-16.nb 21

copyright © N T Gladd 2016

In[81]:= Clear[Jnt, 2];

2[x_, y_, ρ_] := PDF[BinormalDistribution[ρ], {x, y}];

(* Distribute across addition *)

Jnt[a_ + b_, c_] := Jnt[a, c] + Jnt[b, c];

(* Remove constant terms *)

Jnt[a_ b_, {var_, lo_, hi_}] /; FreeQ[a, var, ∞] := a Jnt[b, {var, lo, hi}];

(* Expand ∫a
∞f[x]ⅆx →

∫-∞
∞ f[x]ⅆx - ∫-∞

a f[x]ⅆx to obtain form consistent with defintion of 2 *)

Jnt[arg_, {var_, lo_, ∞}] /; Not[SameQ[lo, -∞]] :=

Jnt[arg, {var, -∞, ∞}] - Jnt[arg, {var, -∞, lo}];

(* Interchange order of integration so that

∫-∞
∞
2(x, y, ρ)dx or ∫-∞

∞
2(x, y, ρ)dy will evaluate first. *)

Jnt[Jnt[2[x, y, ρ], {var1_, -∞, hi_}], {var2_, -∞, ∞}] /; Not[SameQ[hi, -∞]] :=

Jnt[Jnt[2[x, y, ρ], {var2, -∞, ∞}], {var1, -∞, hi}];

(* Match definition of 2 *)

Jnt[Jnt[2[x, y, ρ], {x, -∞, a}], {y, -∞, b}] := 2[a, b, ρ];

(* Evaluates ∫-∞
∞
2(x, y, ρ) ⅆx or ∫-∞

∞
2(x, y, ρ) ⅆy *)

Jnt[arg_, {var_, -∞, ∞}] := Module{w},

w[1] = IntegrateActivate[arg, 2], {var, -∞, ∞}, Assumptions → Reρ2
 ≤ 1;

(* Evaluates ∫-∞
∞
1(x) ⅆx or ∫-∞

∞
1(y) ⅆy *)

Jnt[arg_, {var_, -∞, hi_}] /; FreeQ[arg, 2, ∞] :=

Integrate[arg, {var, -∞, hi}] /. ErfRules;

A sequence of intermediate evaluations occur and rules fire, but the final result is obtained by simply

evaluating the defined expression.

In[90]:= wA[1] = Jnt[Jnt[Inactivate[2[x, y, ρ], 2], {x, a, ∞}], {y, -∞, b}]

Out[90]= [b] - 2[a, b, ρ]

22 Compound Options - 08-20-16.nb

copyright © N T Gladd 2016

Appendix B Visualization

Figure

In[91]:= Module[{t = 0, TO = 1, TS = 2, ymax = 1},

Graphics[{{Directive[Thick, Black], Line[{{t, 0}, {TS, 0}}]},

Line[{{0, 0}, {0, ymax}}], {Directive[Black, Dashed],

Line[{{TS, 0}, {TS, ymax}}], Line[{{TO, 0}, {TO, ymax}}]},

Text[Style["t", Bold], {0, -0.12}],

Text[Style["TO", Bold], {1, -0.12}],

Text[Style["TS", Bold], {2, -0.12}],

Text[Style["Option on Stock expires at TS", Bold], {1.1, 0.5}, {-1, 0}],

Text[Style["Strike = KS", Bold], {1.1, 0.35}, {-1, 0}],

Text[Style["Option on Option expires at TO", Bold], {0.1, 0.5}, {-1, 0}],

Text[Style["Strike = KO", Bold], {0.1, 0.35}, {-1, 0}]}, AspectRatio → 0.25]]

Out[91]=

t TO TS

Option on Stock expires at TS
Strike = KS

Option on Option expires at TO
Strike = KO

Functions

In[10]:= Clear[];

::usage = "Cumulative standard normal distribution function";

[z_?NumberQ] := 1  2 1 + Erfz  2  // N;

In[13]:= Clear[EuroCall];

EuroCall[S_, K_, r_, q_, σ_, τ_] :=

Module{d1},

If[τ <= 0.00001, Return[Max[S - K, 0.0]]];

d1 = LogS  K + r - q + σ^2  2 τ  σ Sqrt[τ];

S Exp[-q τ] [d1] -

K Exp[-r τ] [d1 - σ Sqrt[τ]];

Compound Options - 08-20-16.nb 23

copyright © N T Gladd 2016

